BSEB 11 BIO CH 17

BSEB Bihar Board Class 11 Biology Solutions Chapter 17 श्वसन और गैसों का विनिमय

Bihar Board Class 11 Biology श्वसन और गैसों का विनिमय Text Book Questions and Answers

प्रश्न 1.
जैव क्षमता की परिभाषा दीजिए और इसका महत्त्व बताइए।
उत्तर:
जैव क्षमता (Vital Capacity, VC):
अन्तः श्वास आरक्षित वायु (Inspiratory Reserve Air Volume, IRV), प्रवाही वायु (Tidal Air Volume, TV) तथा उच्छ्वास आरक्षित वायु (Expiratory Reserve Air Volume, ERV) का योग (IRV + TV + ERV – 3000 + 500 + 1100 = 4600 मिली) फेफड़ों की जैव क्षमता होती है।

यह वायु की वह कुल मात्रा होती है जिसे हम पहले पूरी चेष्टा द्वारा फेफड़ों में भरकर पूरी चेष्टा द्वारा शरीर से बाहर निकाल सकते हैं। जिस व्यक्ति की जैव क्षमता जितनी अधिक होती है, उसे शरीर की जैविक क्रियाओं के लिए अधिक ऊर्जा प्राप्त होती है।

खिलाड़ियों, पर्वतारोही, तैराक आदि की जैव क्षमता अधिक होती है। युवक की जैव क्षमता प्रौढ़ की अपेक्षा अधिक होती है। पुरुषों की जैव क्षमता स्त्रियों की अपेक्षा अधिक होती है। उनकी कार्य क्षमता को प्रभावित करती है।

प्रश्न 2.
सामान्य निःश्वसन के उपरान्त फेफड़ों में शेष वायु के आयतन को बताएँ।
उत्तर:
सामान्य श्वसन के उपरान्त फेफड़ों में शेष वायु को कार्यात्मक अवशेष सामर्थ्य (Functional Residual Capacity FRC) कहते हैं। यह निःश्वसन (Expiration) आरक्षित वायु (Expiratory Reserve Air Volume, ERV) तथा अवशेष वायु (Residual Air Volume, RV) के योग के बराबर होती है।
FRC = ERV + RV
= 1100 + 1200
मिली = 2300 मिली

प्रश्न 3.
गैसों का विसरण केवल कूपकीय क्षेत्र में होता है, श्वसन तन्त्र के किसी अन्य भाग में नहीं, क्यों?
उत्तर:
गैसीय विनिमय (Gaseous Exchange):
मनुष्य के फेफड़ों में लगभक 30 करोड़ वायु कोष्ठक या कृपिकाएँ (alveoli) होते हैं। इनकी पतली भित्ती में रक्त कोशिकाओं का घना जाल फैला होता है। श्वासनल (trachea), garhit (bronchus), parafa (bronchiole), opfu chat नलिकाओं (alveolar duct) आदि में रक्त कोशिकाओं का जाल फैला हुआ नहीं होता। इनकी भित्ति मोटी होती है।

अतः कूपिकाओं (alveoli) को छोड़कर अन्य श्वसन भागों में गैसीय विनिमय नहीं होता। सामान्यतया ग्रहण की गई 500 मिली प्रवाही वायु में से लगभग 350 मिली कूपिकाओं में पहुँचती है, शेष श्वास मार्ग में ही रह जाती है।

वायु कोष्ठकों की भित्ति तथा रक्त कोशिकाओं की भित्ति मिलकर श्वसन कला (respiratory membrane) बनाती है। इससे O2 तथा CO2 का विनिमय सुगमता से हो जाता है। गैसीय विनिमय सामान्य विसरण द्वारा होता है। इसमें गैसें उच्च आंशिक दबाव से कम आंशिक दबाव की ओर विसरित होती हैं।

चित्र – वायुकोष्ठक (कूपिका) में गैसीय विनिमय

वायुकोष्ठकों में O2 का आँशिक दबाव 100 – 104 mm Hg और CO2 का आंशिक दबाव 40 mm Hg होता है। फेफड़ों में रक्त कोशिकाओं में आए अशुद्ध रुधिर में O2 का आंशिक दबाव 40 mm Hg और CO2 का आंशिक दबाव 45-46 mm Hg होता है।

ऑक्सीजन वायुकोष्ठकों की वायु से विसरित होकर रक्त में जाती है और रक्त से CO2 विसरित होकर वायुकोष्ठकों की वायु में जाती है। इस प्रकार वायुकोष्ठकों से रक्त ले जाने वाली रक्त कोशिकाओं में रक्त ऑक्सीजनयुक्त (oxygenated) होता है। फेफड़ों से निष्कासित वायु में O2 लगभग 15.7% और CO2 लगभग 3.6% होती है।

प्रश्न 4.
CO2 के परिवहन (ट्रांसपोर्ट) की मुख्य क्रियाविधि क्या है? व्याख्या करें।
उत्तर:
कार्बन डाइऑक्साइड का रुधिर द्वारा परिवहन (Transportation of Carbon Dioxide by Blood):
ऊतकों में संचित खाद्य पदार्थों के ऑक्सीकरण से उत्पन्न कार्बन डाइऑक्साइड विसरण द्वारा रुधिर केशिकाओं में चली जाती है।
रुधिर केशिकाओं द्वारा इसका परिवहन श्वसनांगों तक निम्नलिखित तीन प्रकार से होता है –

1. प्लाज्मा में घुलकर (Dissolved in Plasma):
लगभग 7% कार्बन डाइऑक्साइड का परिवहन प्लाज्मा में घुलकर कार्बोनिक अम्ल (H2C03) के रूप में होता है।

2. बाइकार्बोनेट्स के रूप में (In the form of Bicarbonates):
लगभग 70% कार्बन डाइऑक्साइड का परिवहन बाइकार्बोनेट्स के रूप में होता है। प्लाज्मा के अन्दर कार्बोनिक अम्ल का निर्माण धीमी गति से होता है। अत: कार्बन डाइऑक्साइड का अधिकांश भाग (93%) लाल रुधिराणुओं में विसरित हो जाता है।

इसमें से 70% कार्बन डाइऑक्साइड से कार्बोनिक अम्ल व अन्त में बाइकार्बोनेट्स का निर्माण हो जाता है। लाल रुधिराणुओं में कार्बोनिक एनहाइड्रेज एन्जाइम की उपस्थिति में कार्बोनिक अम्ल का निर्माण होता है।

प्लाज्मा में, कार्बोनिक एनहाइड्रेज एन्जाइम अनुपस्थित होता है; अतः प्लाज्मा में बाइकार्बोनेट कम मात्रा में बनता है। बाइकार्बोनेट आयन (HCO−3) लाल रुधिराणुओं के पोटैशियम आयन (K+) तथा प्लाज्मा के सोडियम आयन (Na+) से क्रिया करके क्रमशः पोटैशियम तथा सोडियम बाइकार्बोनेट बनाता है।

क्लोराइड शिफ्ट या हैम्बर्गर परिघटना (Chloride Shift or Hambergur Phenomenon):
सामान्य pH तथा विद्युत तटस्थता (electric neutrality) बनाए रखने के लिए जितने बाइकार्बोनेट आयन रुधिर कणिकाओं से प्लाज्मा में आते हैं, उतने ही क्लोराइड आयन (Cl) रुधिर कणिकाओं में जाकर उसकी पूर्ति करते हैं।

इस क्रिया के फलस्वरूप प्लाज्मा में बाइकार्बोनेट तथा लाल रुधिर कणिकाओं में क्लोराइड आयनों का जमाव हो जाता है। इस क्रिया को क्लोराइड शिफ्ट (chloride shift) कहते हैं। श्वसन तल पर प्रक्रियाएँ विपरीत दिशा में होती हैं जिससे CO2 मुक्त होकर वायुमण्डल में चली जाती है।

3. कार्बोक्सीहीमोग्लोबिन के रूप में (In the form of Carboxyhaemoglobin):
कार्बन डाइऑक्साइड का लगभग 23% भाग लाल रुधिर कणिकाओं के हीमोग्लोबिन से मिलकर अस्थायी यौगिक बनाता है –
हीमोग्लोबिन + CO2 → कार्बोक्सीहीमोग्लोबिन

सोडियम तथा पोटैशियम के बाइकार्बोनेट्स तथा कार्बोक्सीहीमोग्लोबिन आदि पदार्थों से युक्त रुधिर अशुद्ध होता है। यह रुधिर ऊतकों और अंगों से शिराओं द्वारा हृदय में पहुँचता है। हृदय से यह रुधिर फुफ्फुस धमनियों द्वारा फेफड़ों में शुद्ध होने के लिए जाता है।

फेफड़ों में ऑक्सीजन को अधिक मात्रा होने के कारण रुधिर की हीमोग्लोबिन ऑक्सीजन से मिलकर ऑक्सीहीमोग्लोबिन बनाती है। ऑक्सीहीमोग्लोबिन, हीमोग्लोबिन की अपेक्षा अधिक अम्लीय होता है। ऑक्सीहीमोग्लोबिन के अम्लीय होने के कारण श्वसन सतह पर कार्बोनेट्स तथा कार्बोनिक अम्ल का विखण्डन (decomposition) होता है –

कार्बोक्सीहीमोग्लोबिन तथा प्लाज्मा प्रोटीन के रूप में बने अस्थायी यौगिक भी ऑक्सीजन से संयोजित होकर कार्बन डाइऑक्साइड को मुक्त कर देते हैं –

(घ) कार्बोक्सीहीमोग्लोबिन → हीमोग्लोबिन + CO2
उपर्युक्त प्रकार से मुक्त हुई कार्बन डाइऑक्साइड रुधिर कोशिकाओं तथा फेफड़ों की पतली दीवार से विसरित होकर फेफड़ों में पहुँचती है जहाँ से यह उच्छ्वास द्वारा बाहर निकाल दी जाती है।

प्रश्न 5.
कूपिका वायु की तुलना में वायुमण्डलीय वायु में pO2 तथा pCO2 कितनी होगी? मिलान कीजिए।

  1. pO2 न्यून, pCO2 उच्च
  2. pO2 उच्च, pCO2 न्यू
  3. pO2 उच्च, pCO2 उच्च
  4. pO2 न्यून, pCO2 न्यून

उत्तर:
2. pO2 उच्च, pCO2 न्यून।

Proof:
(वायुमण्डलीय वायु में O2 का आंशिक दाब 159 तथा CO2 का आंशिक दाब 0.3 होता है, जबकि कूपिका वायु में O2 का आंशिक दाब 104 तथा CO2 का दाब 40 होता है।)

प्रश्न 6.
सामान्य स्थिति में अन्तः श्वसन प्रक्रिया की व्याख्या करें।
उत्तर:
सामान्य श्वासोच्छ्वास (breathing) या श्वासन अनैच्छिक होता है। इसमें पसलियों की गति की भूमिका 25% और डायफ्राम की भूमिका 75% होती है।

चित्र – श्वासोच्छ्वास की क्रियाविधि –
(A) अन्तःश्वास
(B) उच्छ्वास

अन्तःश्वास या प्रश्वसन (Inspiration):
सामान्य स्थिति में अन्त:श्वास में गुम्बदनुमा डायफ्राम पेशियों में संकुचन के कारण चपटा सा हो जाता है। डायफ्राम की गति के साथ बाह्य अन्तराशुक पेशियों (external intercostal muscles)में संकुचन से पसलियाँ सीधी होकर ग्रीवा की तथा बाहर की तरफ खिंचती है। इससे उरोस्थि (sternum) ऊपर और आगे की ओर उठ जाती है। इन गतियों के कारण वक्षगुहा का आयतन बढ़ जाता है और फेफड़े फूल जाते हैं।

वक्ष गुहा और फेफड़ों में वृद्धि के कारण वायुकोष्ठकों या कूपिकाओं (alveoli) में वायुदाब लगभग 1 से 3 mm Hg कम हो जाता है। इसकी पूर्ति के लिए वायुमण्डलीय वायु श्वास मार्ग से कूपिकाओं में पहुँच जाती है। इस क्रिया की अन्तःश्वास कहते हैं, इसके द्वारा मनुष्य (अन्य स्तनी) वायु ग्रहण करते हैं।

प्रश्न 7.
श्वसन का नियमन कैसे होता है?
उत्तर:
श्वसन का नियमन (Regulation of Respiration):
मस्तिष्क के मेड्युला (medulla) एवं पोन्स वैरोलाइ (Pons varolii) में स्थित श्वास केन्द्र (respiratory centre) पसलियों तथा डायफ्राम से सम्बन्धित पेशियों की क्रिया का नियमन करके श्वासोच्छ्वास (breathing) या श्वसन (respiration) का नियमन करता है। श्वास क्रिया तन्त्रिकीय नियन्त्रण में होती है। यही कारण है कि हम अधिक देर तक श्वास नहीं रोक पाते हैं।

फेफड़ों की भित्ति में ‘स्ट्रेच संवेदांग’ (stretch receptors) होते हैं। फेफड़ों के आवश्यकता से अधिक फूल जाने पर वे संवेदाग पुनर्निवेशन नियन्त्रण (feedback control) के अन्तर्गत निःश्वसन को तुरन्त रोकने के लिए हेरिंग ब्रुएर रिफ्लेक्स चाप (Hering-Bruer Reflex Arch) की स्थापना करके श्वास केन्द्र को उद्दीपित करते हैं, जिससे श्वास दर बढ़ जाती है। यह नियन्त्रण प्रतिवर्ती क्रिया के अन्तर्गत होता है।

शरीर के अन्त:वातावरण में CO2 की सान्द्रता के कम या अधिक हो जाने से श्वास केन्द्र स्थिर उद्दीपित होकर श्वास दर को बढ़ाता या घटाता है। O2 की अधिकता कैरोटिको सिस्टैमिक चाप (Carotico systemic arch) में उपस्थित सूक्ष्म रासायनिक संवेदांगों को प्रभावित करती है। ये संवेदाग श्वास केन्द्र को प्रेरित करके श्वास दर को घटा या बढ़ा देते हैं।

प्रश्न 8.
pCO2 का ऑक्सीजन के परिवहन में क्या प्रभाव पड़ता है?
उत्तर:
गैसों के मिश्रण में किसी विशेष गैस की दाब में भागीदारी को आंशिक दाब कहते हैं। इसे ‘p’ से प्रदर्शित करते हैं। O2 तथा CO2 के लिए इसे क्रमशः pO2, तथा pCO2 से दर्शाते हैं। निम्नांकित तालिका में प्रदर्शित आँकड़े स्पष्ट रूप से कूपिकाओं से रक्त और रक्त से ऊतक में O2 के लिए सान्द्रता प्रवणता का संकेत दर्शाते हैं। इसी प्रकार CO2 के लिए विपरीत दिशा में प्रवणता दर्शाई गई हैं, अर्थात् ऊतकों से रक्त और रक्त से कूपिकाओं की तरफ।

तालिका – वातावरण की तुलना में विसरण में सम्मिलित विभिन्न भागों पर O2 तथा CO2 का आंशिक दबाव

वायु कूपिकाओं से जो ऑक्सीकृत रक्त ऊतकों में पहुँचता है उसमें आंशिक दबाव pO2 95 mm Hg तथा pCO2 40mm Hg होता है। ऊतकों में O2, तथा CO2, का आंशिक दबाव क्रमश: 40 mm Hg और 45-46 mm Hg होता है। ऊतक तथा रक्त कोशिकाओं में पाए जाने वाली O2 और CO2 की सान्द्रता प्रवणता या आंशिक दबाव में अन्तर होने के कारण रक्त कोशिकाओं से O2 ऊतकों में और CO2 ऊतकों से रक्त कोशिकाओं में विसरित हो जाती है।

प्रश्न 9.
पहाड़ पर चढ़ने वाले व्यक्ति की श्वसन प्रक्रिया में क्या प्रभाव पड़ता है?
उत्तर:
पहाड़ पर ऊँचाई चढ़ने के साथ-साथ वायु में O2 का आंशिक दाब कम हो जाता है, अतः मैदान की अपेक्षा ऊँचाई पर श्वासोच्छ्वास क्रिया अधिक तीव्र गति से होगी। इसके निम्नलिखित कारण होते हैं –

1. रुधिर में घुली हुई ऑक्सीजन का आंशिक दाब कम हो जाता है। O2 रक्त में सुगमता से विसरित होती है। अतः शरीर में ऑक्सीजन परिसंचरण कम हो जाता है। इसके फलस्वरूप सिरदर्द तथा उल्टी (वमन) का आभास होता है।

2. अधिक ऊँचाई पर वायु में ऑक्सीजन की मात्रा अपेक्षाकृत कम होती है, अतः वायु से अधिक O2 प्राप्त करने के लिए श्वासोच्छ्वास क्रिया तीव्र हो जाती है।

3. कुछ दिनों तक ऊँचाई पर रहने से रुधिर में लाल रुधिराणुओं की संख्या बढ़ जाती है और श्वास क्रिया सामान्य हो जाती है।

प्रश्न 10.
कीटों में श्वासन क्रियाविधि कैसी होती है?
उत्तर:
कीटों में श्वास क्रियाविधि (Breathing in Insects):
कीटों में श्वसन हेतु ट्रैकिया (trachea) पाए जाते हैं। कीटों के शरीर में ट्रैकिया का जाल फैला होता है। ट्रैकिया पारदर्शी, शाखामय, चमकीली, नलिकाएँ होती है।

ये श्वास रन्धों (spiracles) द्वारा वायुमण्डल से सम्बन्धित रहती हैं। श्वास रन्ध्र छोटे वेश्म (atrium) में खुलते हैं। श्वास रन्ध्रों पर रोमाभ सदृश शूक तथा कपाट पाए जाते हैं। कुछ श्वास रन्ध्र सदैव खुले रहते हैं। शेष अन्तःश्वसन (inspiration) के समय खुलते हैं और उच्छ्व सन (expiration) के समय बन्द रहते हैं।

ट्रैकियल वेश्म (atrium) से शाखाएँ निकलकर एक पृष्ठ तथा अधर तल पर ट्रैकिया का जाल बना लेती हैं। ट्रैकिया से निकलने वाली ट्रैकिओल्स (tracheoles) ऊतक या कोशिकाओं तक पहुँचती है। कीटों में गैसों का विनिमय बहुत ही प्रभावशाली होता है और O2, सीधे कोशिकाओं तक पहुँचती है। इसी कारण – कीट सर्वाधिक क्रियाशील होते हैं।

चित्र – कीट में ट्रैकिया जाल

प्रश्न 11.
ऑक्सीजन वियोजन वक्र की परिभाषा दीजिए। क्या आप इसकी सिग्माभ आकृति का कोई कारण बता सकते हैं?
उत्तर:
ऑक्सीजन वियोजन वक्र (Oxygen Dissociation Curve):
हीमोग्लोबिन द्वारा ऑक्सीजन ग्रहण करने की क्षमता ऑक्सीजन के आंशिक दबाव (partial pressure) अर्थात् pO2 पर निर्भर करती है। हीमोग्लोबिन की वह प्रतिशत मात्रा जो ऑक्सीजन ग्रहण करती है, इसकी प्रतिशत संतृप्ति (percentage saturation of haemoglobin) कहलाती है।

जैसे –
फेफड़ों में रक्त के ऑक्सीजनीकृत होने पर O2, का आंशिक दबाव pO2, लगभग 97 mm Hg होता है। इस pO2, पर हीमोग्लोबिन की प्रतिशत संतृप्ति लगभग 98% होती है। ऊतकों से वापस आने वाले रक्त में O2 का आंशिक दबाव pO2 लगभग 40 mm Hg होता है। इस पर pO2 पर हीमोग्लोबिन की प्रतिशत संतृप्ति लगभग 75% होती है। pO2 तथा हीमोग्लोबिन की प्रतिशत संतृप्ति के सम्बन्ध को ग्राफ पर अंकित करने पर एक सिग्माभ वक्र (sigmoid curve) प्राप्त होता है। इसे ऑक्सीजन वियोजन वक्र कहते हैं।

ऑक्सीजन हीमोग्लोबिन वियोजन वक्र पर शरीर ताप एवं रक्त के pH का प्रभाव पड़ता है। ताप के बढ़ने पर pH के कम होने पर यह वक्र दाहिनी ओर खिसकता है। इसके विपरीत ताप के कम होने पर या pH के अधिक होने से ऑक्सीजन हीमोग्लोबिन वक्र बाई ओर खिसकता है।

चित्र – ऑक्सीजन-हीमोग्लोबिन वियोजन वक्र का ग्राफीय चित्रण

रक्त में CO2 की मात्रा बढ़ने या इसका pH घटने (H+ आयन की संख्या बढ़ने से) पर O2 के प्रति हीमोग्लोबिन की आकर्षण शक्ति कम हो जाती है। इसी को बोहर प्रभाव (Bohr effect) कहते हैं। यह क्रिया ऊतकों में होती है। इस प्रकार बोहर प्रभाव का योगदान हीमोग्लोबिन को फेफड़ों से ऊतकों तक ऑक्सीजन के परिवहन को प्रोत्साहित करता है।

फेफड़ों में हीमोग्लोबिन को O2 मिलते ही CO2 के प्रति इसका आकर्षण कम हो जाता है और कार्बोमिनोहीमोग्लोबिन CO2 त्यागकर सामान्य हीमोग्लोबिन बन जाता है। अम्लीय हीमोग्लोबिन H+ आयन मुक्त करता है जो बाइकार्बोनेट (HCO−3) से मिलकर कार्बोनिक अम्ल बनाते हैं। यह शीघ्र ही CO2 तथा H2O में टूटकर CO2 को मुक्त कर देता है। इसे हैल्डेन प्रभाव (Haldane effect) कहते हैं। हैल्डेन प्रभाव फेफड़ों में CO2 के बहिष्कार को और ऊतकों में O2 के बहिष्कार को प्रेरित करता है।

प्रश्न 12.
क्या आपने अव-ऑक्सीयता (हाइपोक्सिया) (न्यून ऑक्सीजन) के बारे में सुना है? इस सम्बन्ध में जानकारी प्राप्त करने की कोशिश करें व साथियों के बीच चर्चा करें।
उत्तर:
अव-ऑक्सीयता (Hypoxia):
इस स्थिति का सम्बन्ध शरीर की कोशिकाओं/ऊतकों में ऑक्सीजन के आंशिक दबाव में कमी से होता है। यह ऑक्सीजन की कम आपूर्ति के कारण होता है। वायुमण्डल में पहाड़ों पर 8000 फुट से अधिक ऊँचाई पर वायु में O2 का दबाव कम हो जाता है।

इससे सिरदर्द, वमन, चक्कर आना, मानसिक थकान, श्वांस लेने में कठिनाई आदि लक्षण प्रदर्शित होते हैं। इसे कृत्रिम हाइपोक्सिया (artificial hypoxia) कहते हैं। यह रोग प्राय: पर्वतारोहियों को हो जाता है। शरीर में हीमोग्लोबिन की कमी के कारण रक्त की ऑक्सीजन ग्रहण करने की क्षमता प्रभावित होती है। इसे एनीमिया हाइपोक्सिया (anaemia hypoxia) कहते हैं।

प्रश्न 13.
निम्न के बीच अन्तर करें –
(क) IRV (आई० आर० वी०) और ERV (इ० आर० वी)
(ख) अन्तःश्वसन क्षमता (IC) और निःश्वसन क्षमता (EC)
(ग) जैव क्षमता तथा फेफड़ों की कुल धारिता।
उत्तर:
(क) IRV (आई० आर० वी०) तथा ERV (इ० आर० वी०) में अन्तर (Difference between IRV & ERV):

(ख) अन्तःश्वसन क्षमता और निःश्वसन क्षमता में अन्तर (Difference between Inspiratory Capacity and Expiratory Capacity):

(ग) जैव क्षमता तथा फेफड़ों की कुल धारिता में अन्तर (Difference between Vital Capacity and Total Lung Capacity):

प्रश्न 14.
ज्वारीय (प्रवाही) आयतन क्या है? एक स्वस्थ मनुष्य के लिए एक घण्टे के ज्वारीय आयतन (लगभग मात्रा) को आंकलिक कीजिए।
उत्तर:
ज्वारीय (प्रवाही) आयतन (Tidal Volume):
सामान्य परिस्थितियों में मनुष्य जो वायु का आयतन ग्रहण करता है और निष्कासित करता है, ज्वारीय (प्रवाही) आयतन कहते हैं। सामान्यतया इसकी मात्रा 500 मिली होती है।

एक घण्टे में ग्रहण की गई वायु का आयतन –
सामान्यतया मनुष्य एक मिनट में 12-16 बार श्वास लेता और निष्कासित करता है तो एक घण्टे में ग्रहण की गई ज्वारीय (प्रवाही) वायु का आयतन
= श्वास दर × प्रवाही वायु का आयतन × 60
= 12 × 500 × 60 = 360000 मिली प्रति घण्टा या
16 × 500 × 60 = 480000 मिली प्रति घण्टा

Leave a Reply

Leave a Reply

Your email address will not be published. Required fields are marked *